FE65-P2 Timing Dispersion

Successor to FE-I4

Predecessor to RD53A

8 chips in 1 2x2 Analog **Pixels** 000 001 011 001RH **Prototype Pixel Readout Digital Region** Chip:

Hybrid Pixel Detectors

Sensor bump bonded to pads surrounding analog front ends

Charge is collected

FE65-P2: Overview

Tests done on chip without sensor: hit is simulated with injected charge

Propagation of Delay

Delay

Injection -> Amplifier

Constant

Delay

Delay

PlsrDelay Measurements

Per Pixel Delay

PlsrDelay is a 256 bit register with each bit corresponding to a specific delay in nanoseconds

Global Latency chosen so that sweeping through PlsrDelay settings 0->255 gives rising and falling edge in hit occupancy for each pixel

PlsrDelay scan is run at different Comparator currents -> controlled by voltage bias: CompVbn

Mean delay in ns of each pixel is recorded

PlsDelay Measurements

Setting -> Delay Conversion

Delay settings 0->255 must be converted to ns

PlsrDelay step size in nanoseconds is a property of test board

Measure Δt between clock & injection at each PlsrDelay setting

Setting -> Delay Conversion

Column Flavor Dispersion

Next Steps

Compare how mean changes with Comparator current

-> have to make latencies comparable

PlsrDelay scans with different Pre-Amp current setting

